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Abstract
We consider the double trapping reaction A + B → B,B + C → C in one
dimension. The survival probability of a given A particle is calculated under
various conditions on the diffusion constants of the reactants, and on the ratio
of initial B and C particle densities. The results are shown to be of more general
form than those obtained in previous work on the problem.

PACS numbers: 05.40.−a, 02.50.Ey, 82.20.−w

1. Introduction

The simple trapping reaction A+B → B has been studied intensely over the last two decades,
motivated in part by studies of the related two-species annihilation problem, A + B → 0,
introduced in the classic paper of Toussaint and Wilczek [1]. These models are relevant
to problems in chemical kinetics, as well as various processes in physics and biology. For
example, the two-species annihilation reaction A + B → 0 models the reaction A + B → C,
where the product species C is inert, while the trapping reaction A+B → B models a catalytic
process. In one spatial dimension the survival probability, QA(t), of a single diffusing A
particle moving in an initially homogeneous background of diffusing B particles has been
proved rigorously to decay as QA(t) ∼ exp(−λt1/2) [2]. Only recently, however, has an exact
expression for the coefficient λ been derived [3]: λ = (4/

√
π)ρB

√
DB , where ρB and DB

are the density and diffusion constant, respectively of the B particles. The result has been
generalized [4] to all (continuous) dimensions d � 2. A curious feature of the result is the
absence of any dependence on the diffusion constant, DA, of the A particle (at least in the
leading asymptotics—DA does appear, however, in subdominant terms [5]). For d > 2 the
rate-equation approach, which predicts a simple exponential decay, is qualitatively correct [2].

In contrast to the simple trapping reaction, more complex trapping sequences have received
little attention. This paper is devoted to the double trapping reaction A+B → B,B +C → C.
We try to compute the fraction of A particles remaining at time t, or equivalently, the probability,
QA(t), that a single A particle has survived up to time t, given that it is initially surrounded
by a sea of Poisson distributed traps, the B particles. The B particles themselves are initially
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surrounded by Poisson distributed traps—the C particles—and thus disappear from the system
at each time step with a probability to be determined. By ‘Poisson distributed’ we mean that
the probability of finding N traps in an interval of length L is [(ρB,CL)N/N!] exp(−ρB,CL),
where ρB,C is the density of B or C particles. Since the C particles diffuse independently, and
do not disappear from the system, they remain Poisson distributed at all times. The spatial
distribution of the B particles may change, however, as B particles are absorbed.

Of particular interest is the limit t → ∞. Since the B-particle density ultimately decays
to zero, the function QA(t) will approach a non-zero limit QA(∞) which, on dimensional
grounds, can only depend on the density ratio ρB0/ρC , where ρB0 = ρB(0) is the initial
B-particle density, and on the ratios DA/DB,DB/DC of diffusion constants. The calculation
of QA(∞) is our main goal.

This double trapping problem has been studied using a mean-field (i.e. rate equation)
approach, which should again be qualitatively valid for d > 2, and by a version of the Galanin
model for d = 1 [6]. The latter approach predicts the following limiting result:

QA(∞) =
(

1 +
ρB0

ρC

√
DA + DB

DB + DC

)−1

. (1)

This paper considers various limiting regimes of the general problem in which exact results
or bounds can obtained for comparison with equation (1). We also obtain some results on the
asymptotic form of the time dependence of QA(t), i.e. on the manner in which the asymptotic
limit is approached.

2. Analysis of the survival probabilities

Each particle i diffuses according to the Langevin equation ẋi = ηi(t), where ηi(t) is
Gaussian white noise with mean zero and correlator 〈ηi(t)ηj (t

′)〉 = 2Dδij δ(t − t ′), where
D = DA,DB,DC are the diffusion constants for the three reactant species. From this one can
derive in standard fashion a backward Fokker–Planck equation governing the time evolution
of the particle’s survival probability Q(xi, t):

∂Q(xi, t)

∂t
= D

∂2Q(xi, t)

∂x2
i

, (2)

where xi is the position of the ith particle at time t = 0.
We consider three subsets of the general double trapping problem: the cases where

DA � DB � DC , where DB = 0 and where DA = DC = 0. In the first two cases it will
be necessary, to obtain exact results or exact bounds, to limit consideration to the regime
ρB0 � ρC . For the case DA = DC = 0, however, an exact result for QA(∞) is possible for
all values of the ratio ρB0/ρC .

2.1. The case DA � DB � DC

We first consider a subset of the general A + B → B,B + C → C problem in which the
diffusion constants of the A,B and C particles are subject to the condition DA � DB � DC .
This allows us to approximate each process as an independent ‘target annihilation problem’
[7], i.e. in the reaction B + C → C we treat the B particles as static and the C particles as
mobile traps, and in the A + B → B process we consider the B particles as mobile traps for
a static A particle. We also subject this problem to the condition ρB0 � ρC to ensure that the
B particles remain Poisson distributed even at large times, i.e. that no clustering of B particles
emerges in regions free of C particles. The reason for this condition will become clear shortly.
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We begin by considering a single, static B particle at the origin. The survival probability,
Q1, of the B particle with only one C present, starting at some x > 0, is the solution of (2)
subject to the boundary conditions Q1(0, t) = 0,Q1(∞, t) = 1 and Q1(x, 0) = 1. That is [8]

Q1(x, t) = erf

(
x√

4DCt

)
,

where erf(y) is the error function. With N traps present, where N = ρCL, starting at positions
xi uniformly distributed in [0, L], the survival probability of the B particle is (following the
argument in [7])

QN(t) =
N∏

i=1

[
1

L

∫ L

0
dxi erf

(
xi√

4DCt

)]
,

where we have averaged over the starting positions. Rewriting the error function in terms of
the complementary error function, erf(y) = 1 − erfc(y), and using the fact that the C particles
are independent, we have

QN(t) =
[

1 − 1

L

∫ L

0
dx erfc

(
x√

4DCt

)]ρcL

. (3)

Taking the limits N → ∞ and L → ∞, keeping ρC fixed, and evaluating the integral in (3),
gives

Q(t) = exp

(
− 2√

π
ρC

√
DCt

)
. (4)

We can perform the same calculation on the opposite side of the B particle and, since the
results are symmetric and independent, get the same result. So the full survival probability of
the B particle is simply the square of (4), i.e.

QB(t) = exp

(
− 4√

π
ρC

√
DCt

)
, (5)

which is the standard result for the one-dimensional target problem.
For the A + B → B process we can use the ‘toy model’ introduced in [9]. In this model,

the traps B are assumed to disappear randomly in a manner consistent with the required density
ρB(t). The model will be an exact representation of the double trapping reaction provided
ρB0 � ρC , so that no correlations develop in the positions of surviving B particles. The time
dependence of the A-particle survival probability, QA(t), within this model is calculated using
a similar argument to that outlined above, but with the traps disappearing from the system
at each time step with a known probability. In our case, we can describe this decay of traps
using the survival probability of a B particle, QB(t), as given by (5). The model gives for the
survival probability of the A particle [9]

QA(t) = exp

(
−2ρB0

√
DB

π

∫ t

0

dτ

τ 1/2
QB(τ)

)
.

Substituting for QB(τ) from equation (5) gives the result

QA(t) = exp

[
−ρB0

ρC

√
DB

DC

(
1 − e− 4√

π
ρC

√
DCt)]

. (6)

Note that this result was derived treating the A particles as static, so it will become
asymptotically exact in the limit DA � DB (and we have already assumed DB � DC).

For the case where ρB0 � ρC and DB � DC still hold, but DA is arbitrary, the ‘Pascal
principle’ [10], according to which the A particle survives longest if it does not move, shows
that equation (6) provides an upper bound on QA(t) for any value of DA.
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Figure 1. For DB = 0 and ρB0 � ρC , the A particles diffuse among static traps which disappear
randomly and independently.

2.2. The case DB = 0

For the B + C → C reaction, with the B particles remaining static, we can again use the result in
equation (5) for the B-particle survival probability. The A + B → B process remains, however,
a nontrivial problem, consisting of A particles diffusing among static traps each of which has
a survival probability QB(t), as shown in figure 1. Taking once again the limit ρB0 � ρC ,
the survival probabilities of the different B particles can be treated as independent, but the
problem is still nontrivial. We can, however, find a lower bound on QA(t) by considering an
approach based on the span, R(t), of a random walk—the distance from the point of maximum
excursion in one direction to maximum excursion in the opposite direction, up to time t. The
average value of this quantity is given by (see [11])

〈R(t)〉 = 4

√
DAt

π
. (7)

We formulate the A + B → B process as follows. We write the infinitesimal change in the
survival probability of a given A particle, dQA, in terms of the probability that it is trapped by
a B particle in the time interval t → t + dt in which the span of the random walk increases by
dR:

dQA = −ρB0 dRQ(A,B; t)

= −ρB0 dRQAQ(B|A; t), (8)

where ρB0 dR is the probability of finding a B particle initially in the interval dR (treating, as
usual, the initial B particle locations as a Poisson process), Q(A,B; t) is the joint probability
that both the A particle and the B particle have survived up to time t, and Q(B|A; t) is the
conditional probability that the B particle has survived until time t given that the A particle
has survived. To treat the survival probability of the A and the B particles as independent, we
must make the assumption that the B particles remain Poisson distributed at all times, i.e. that
the positions of the B particles are not spatially correlated. If the B particles survive in clusters
and there develop regions totally free of B particles, then the probability that an A particle
has survived will depend on whether it is in a B-free region or in a cluster of B particles.
In the limit ρB0 � ρC , the assumption of independence is justified, and allows us to write
Q(B|A; t) = QB(t), with QB(t) given by (5). The solution of (8) is then

QA(t) = exp

(
−ρB0

∫ t

0
QB(τ)

dR

dτ
dτ

)
.

The span is a stochastic variable so we need to average over all realizations of the function
R(τ), which analytically is not trivial. We can, however, obtain a lower bound by using the
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Figure 2. We consider the subset of the problem where DA = DC = 0. For the A particle to
survive, all the B particles between the neighbouring C particles must reach a C particle first, thus
being removed from the system before reaching the A particle.

convexity inequality

〈QA(t)〉 =
〈
exp

(
−ρB0

∫ t

0
QB(τ)

dR

dτ
dτ

)〉

� exp

(
−ρB0

∫ t

0
QB(τ)

d

dτ
〈R〉 dτ

)
,

and by substituting for 〈R(t)〉 using (7) we obtain the result

〈QA(t)〉 � exp

[
−ρB0

ρC

√
DA

DC

(
1 − e− 4√

π
ρC

√
DCt)]

. (9)

2.3. The case DA = DC = 0

We now consider the case where the A and C particles remain static and the B particles diffuse
among them. We can treat this as an extension of the Gambler’s Ruin problem [8]. We need
only consider a single A particle and the nearest C particle on either side of it, as shown in
figure 2. For the probability that the A particle survives, we want the probability that all B
particles between the A particle and the nearest C particles on either side reach the C particles
before the A particle. The results (after averaging over the distances L and L′ in figure 2)
will be the same on each side, and independent so we may solve the backward Fokker–Planck
equation (2) on one side and simply square the result. We solve equation (2) subject to the
boundary conditions Q(0, t) = 0,Q(L, t) = 1, where we have an A particle at the origin
and a C particle at x = L, and the B particle starts at x, uniformly distributed in [0, L]. The
solution is

Q(x, t) = x

L
+

2

π

∞∑
n=1

1

n
sin

(nπx

L

)
exp

(
−n2π2DBt

L2

)
. (10)

Averaging the result over the starting position x gives

Q(t;L) = 1

L

∫ L

0
dxQ(x, t)

= 1

2
+

4

π2

∑
odd n

1

n2
exp

(
−n2π2DBt

L2

)
. (11)



1772 A J Bray and R Smith

We now consider an arbitrary number of B particles in this interval [0, L]. Since the B
particles are Poisson distributed, the probability of having N of them initially in the interval is

pN = (ρB0L)N

N !
e−ρB0L.

Then the probability that the A survives given NB particles initially in [0, L] is, for large t,

Q̄(t;L) =
∞∑

N=0

pN [Q(t;L)]N = e−ρB0L[1−Q(t;L)]

≈ exp

(
−ρB0L

2
+

4ρB0L

π2
e− π2DB t

L2

)
,

where we have kept only the lowest mode since we are interested in an asymptotic large-t
result.

Finally, we average over all possible lengths L, weighted by the Poisson distribution for
the C particle positions:

Q
(1)
A (t) = ρC

∫ ∞

0
Q̄(t;L) e−ρCL dL. (12)

We simplify by differentiating with respect to t and evaluate the resulting integral
asymptotically for large t using the Laplace method [12]. The result is

Q
(1)
A (t) ∼ 1

1 + ρB0

2ρC

[
1 +

8

(3π)1/2

(
ρ2

B0DBt
)1/2

exp

(
−3

(π

2

)2/3
(

ρC

ρB0
+

1

2

)2/3 (
ρ2

B0DBt
)1/3

)]

valid for ρ2
B0DBt 
 1. To include the contribution from the left side we square this result to

obtain, asymptotically,

QA(t) ∼ 1(
1 + ρB0

2ρC

)2

[
1 +

16

(3π)1/2

(
ρ2

B0DBt
)1/2

× exp

(
−3

(π

2

)2/3
(

ρC

ρB0
+

1

2

)2/3 (
ρ2

B0DBt
)1/3

)]
. (13)

Note that this result does not require any condition on the ratio ρB0/ρC . As a check on the
result we evaluate (12) numerically using Gauss–Legendre two-point quadrature. We change
variables to u = 1/(ρy + 1), where ρ = ρC + ρB0/2, to map the infinite range of integration
onto the finite interval [0, 1]. The numerical result along with the asymptotic result (13) is
compared in figures 3 and 4 for two values of the ratio ρB0/ρC , 0.5 and 2, respectively. For
ease of comparison we first write the result (13) in the form

QA(t) − QA(∞)

QA(∞)λ1
(
ρ2

B0DBt
)1/2 = exp

[−λ2
(
ρ2

B0DBt
)1/3]

, (14)

where λ1 = 16/
√

3π and λ2 = 3(π/2)2/3(ρC/ρB0 +1/2)2/3. The result is plotted in log-linear
form in figures 3 and 4.

3. Discussion and summary

The asymptotic result (6) for the survival probability of an A particle in the case DA � DB �
DC and the lower bound (9) obtained for DB = 0 are both subject to the condition ρB0 � ρC .
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Figure 3. Convergence of the asymptotic solution (13) to the numerical solution of (12) with
ρB0/ρC = 0.5. The data are presented as a log-linear plot in the form suggested by equation (14).
The asymptotic solution has gradient 1.
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Figure 4. Convergence of the asymptotic solution (13) to the numerical solution of (12) with
ρB0/ρC = 2. The data are presented as a log-linear plot in the form suggested by equation (14).
The asymptotic solution has gradient 1.

Under these conditions both results reduce to the same limiting forms as (1) at late times

QA(∞) = 1 − ρB0

ρC

√
DA,B

DC

, (15)
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correct to first order in ρB0/ρC . Results (6) and (9) are, however, of a more general form since
they indicate the nature of the asymptotic time dependence of QA(t). Under the condition
ρB0 � ρC necessary for these results to be valid, the exponentials in (6) and (9) can be
expanded to first order in their arguments.

The result (13) for the condition DA = DC = 0 is still more general since it is valid
for any value of the ratio ρB0/ρC . The exact infinite-time result for this case, QA(∞) =
(1 + ρB0/2ρC)−2, differs from the result (1 + ρB0/ρC)−1 obtained from equation (1) under
the same conditions, although once more the two results reduce to the same limiting form,
1 − ρB0/ρC , to leading order in ρB0/ρC . These results suggest the possibility of a systematic
expansion in powers of ρB0/ρC .
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